skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chatterjee, Rukmava"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Impurities in water affect ice adhesion strength on surfaces. Depending on the freezing rate, they can be trapped in ice or pushed out, forming a lubricating layer. They also affect the quasi-liquid layer between ice and surface, impacting adhesion. 
    more » « less
  2. Abstract Synthetic surfaces engineered to regulate phase transitions of matter and exercise control over its undesired accrual (liquid or solid) play a pivotal role in diverse industrial applications. Over the years, the design of repellant surfaces has transitioned from solely modifying the surface texture and chemistry to identifying novel material systems. In this study, selection criteria are established to identify bio‐friendly phase change materials (PCMs) from an extensive library of vegetable‐based/organic/essential oils that can thermally respond by harnessing the latent heat released during condensation and thereby delaying ice/frost formation in the very frigid ambient that is detrimental to its functionality. Concurrently, a comprehensive investigation is conducted to elucidate the relation between microscale heat transport phenomena during condensation and the resulting macroscopic effects (e.g., delayed droplet freezing) on various solidified PCMs as a function of their inherent thermo‐mechanical properties. In addition, to freeze protection, many properties that are responsive to the thermal reflex of the surface, such as the ability to dynamically tune optical transparency, moisture harvesting, ice shedding, and quick in‐field repairability, are achievable, resulting in the development of protective coatings capable of spanning a wide range of functionalities and thereby having a distinctive edge over conventional solutions. 
    more » « less
  3. Abstract Anti‐icing and icephobic materials play a crucial role in demanding applications ranging from energy to transportation systems operating in frigid climates. Despite remarkable advancements in the development of such surface coatings, the use of anti/de‐icing chemicals remains one of the go‐to solutions for ice management. However, they are notoriously prone to removal by shear forces and dissolution. Herein, the design rationale for developing a family of cryoprotectant and phase‐change material (PCM)‐based compositions in the form of mixtures, non‐aqueous emulsions‐creams, and gels that can substantially overcome such challenges is reported. This is achieved through the sustenance of an in‐situ‐generated surface hydration layer that protects the underlying substrate from a variety of foulants, varying from ice to disease‐causing bacteria. Each formulation utilizes unique chemistry to curtail the embodied cryoprotectant loss and can be easily applied as an all‐in‐one sprayable/paintable coating capable of significantly outperforming untreated industrial materials in terms of their ability to delay condensation‐frosting and shed ice simultaneously. Concomitantly, an array of formulation‐specific functionalities is observed in the family, which includes optical transparency, mechanical durability, high shear‐flow stability, and self‐healing characteristics. 
    more » « less
  4. Abstract Preventing water droplets from transitioning to ice is advantageous for numerous applications. It is demonstrated that the use of certain phase‐change materials, which are in liquid state under ambient conditions and have melting point higher than the freezing point of water, referred herein as phase‐switching liquids (PSLs), can impede condensation–frosting lasting up to 300 and 15 times longer in bulk and surface infused state, respectively, compared to conventional surfaces under identical environmental conditions. The freezing delay is primarily a consequence of the release of trapped latent heat due to condensation, but is also affected by the solidified PSL surface morphology and its miscibility in water. Regardless of surface chemistry, PSL‐infused textured surfaces exhibit low droplet adhesion when operated below the corresponding melting point of the solidified PSLs, engendering ice and frost repellency even on hydrophilic substrates. Additionally, solidified PSL surfaces display varying degrees of optical transparency, can repel a variety of liquids, and self‐heal upon physical damage. 
    more » « less